Yablo’s set: An Interpretation preserving paradox and non-circularity
A reply to Graham Priest and Jeffrey Ketland

Ojea Quintana

This paper has two central aims. In the first place, to analyze the two main objections made to Stephen Yablo’s Paradox, concerning whether it is a genuine paradox and whether it is circular, making explicit under which conditions it is one or the other. In the second place, to give an interpretation of the paradox that, taking in consideration those conditions, guarantees its non-circular paradoxicallity.
Section 1: Jeffrey Ketland and non-standard models for Yablo’s set
One attempt to prove that Yablo’s set of propositions is not paradoxical is to give a model for it. Jeffrey Ketland (2004) demonstrated that the standard set of Yablo’s biconditional has a non-standard model. The aim of this Section is to specify the assumptions behind Ketland’s demonstration, generalizating the assumptions behind any other demonstration following his strategy or other, pointing out under which conditions it is possible to give a model.

Ketland’s demonstration runs as follows, given:
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[image: image1.wmf]È

 {F(n) ↔ 
[image: image2.wmf]"

y >n¬F(y) : n
[image: image3.wmf]Î

ω}, 
e.g. 
[image: image4.wmf]F

PA

= 
[image: image5.wmf]);...}

(

3

)

3

(

);

(

2

)

2

(

);

(

1

)

1

(

{

y

F

y

F

y

F

y

F

y

F

y

F

PA

Ø

>

"

«

Ø

>

"

«

Ø

>

"

«

È

; 

(b) M a non-standard model / M |= PA; 

(c) b a non-standard element / 
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ω, b > n;
(d) A set X={b}, which is the interpretation of the F predicate, I(F)=X;

(e) Expand the model to (M, X).

Proposition: PAF  has a model.

Proof: 
(A) Since b is non-standard and is the only element in the interpretation of the predicate F, F will not apply to any standard element: 
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(M, X) |= ¬F(1)

(M, X) |= ¬F(2)      In other words, (M, X) |= {¬F(n): n
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(B) On the other hand, since X is non-empty:

(M, X) |= 
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And since 
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(M, X) |= 
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(M, X) |= 
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(C) From (A) and (B) follows:

(M, X) |= ¬F(1) ↔
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y > 1 F(y)

(M, X) |= ¬F(2) ↔
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(D) And this is equivalent to:
(M, X) |= F(1) ↔
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y > 1 ¬F(y)

(M, X) |= F(2) ↔
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y > 2 ¬F(y)    (M, X) |= {F(n) ↔
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(E) Conclusion:
(M,X) |=
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In this demonstration, it is easy to see that the set of Yablo’s biconditionals has a standard interpretation, quite as he presented it originally:
(F1) for all k >1, Sk is untrue

(F2) for all k >2, Sk is untrue     
[image: image25.wmf])

(

)

(

{

y

F

n

y

n

F

Ø

>

"

«

: n
[image: image26.wmf]Î

ω}

(F3) for all k >3, Sk is untrue 
…
Nevertheless, one could think Yablo’s set without restricting it to standard elements
.


But even in that case, it is easy to give a model for the non-standard set of biconditionals, by using a non-standard model of higher order (this is, a model with a third list of elements, bigger than the elements in the two other lists). Similarly, the key idea is to use a high order non-standard element c which is the only element in the interpretation of the predicate F and which is ‘bigger’ than any standard or low order non-standard element.

Another approach would be, for example, to give a real model. Given a set of biconditionals, with one biconditional for each real number in the interval [0,1), this set is infinite and for each biconditional assignment there will be infinite “bigger” conditionals. Nevertheless, taking to be 1 the only element of the interpretation of the predicate F, the demonstration follows as usual.

In a nutshell, the success of all this modeling strategies is to take an element ‘bigger’ than any element with a biconditional associated and make it the only element in the interpretation of the predicate F.
Section 2: Circularity and fixed-point

Graham Priest (1997) gave a first argument to establish circularity in Yablo’s Paradox: 
“None of this is profound, but it focuses attention on the fact that the paradox concerns a predicate,
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k > x, ¬S(k, 
[image: image29.wmf]s

&

); and the fact that 
[image: image30.wmf]s

&

 = ‘
[image: image31.wmf]"

k > x, ¬S(k, 
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, here, of exactly the same self-referential kind as in the liar paradox. In a nutshell,
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, is the predicate ‘no number greater than x satisfies this predicate’. The circularity is now manifest.

The existence of the fixed point predicate is guaranteed, as in the liar case, by the demonstrative. If naming were implemented with arithmetic, to establish the existence of the fixed point, we would need a standard generalization of the diagonal argument, to the effect that if 
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(x, y1, …, ym) is any formula with the free variables displayed, there is a number, n, which is the code number of 
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(n, y1, …, ym) (or of a formula logically equivalent to it).”
The argument establishes that the function s(n) = 
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k > n, ¬S(k, s(n)), used to build Yablo’s list, is a fixed point:
“However, the circularity has nothing to do with the argument as such; it arises in the structure of the situation. And this is equally true, though perhaps less obvious, of the original formulation. The paradox concerns a sequence of sentences, sn, or s(n), to remind the reader that the subscript notation is just a notational variant of a function applied to its argument. The function s is defined by specifying each of its values, but each of these is defined with reference to s. (As a glance at Yablo’s original formulation suffices to demonstrate.) It is now the function s that is a fixed point. s is the function which, applied to any number, gives the claim that all claims obtained by applying s itself to subsequent numbers are not true.”

Two considerations must be made.
Firstly, the argument is specifically applied to a particular formalization of Yablo’s set, mainly, the one in which semantic notions are involved. It is inside of the semantic concept of satisfaction that the fixed-point predicate
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appears.
Secondly, the argument is not focused on any particular biconditional, but rather on the way in which we construct the set of biconditionals. No one gave a proof that establishes the presence of a fixed-point in the set or any of its members.

Section 3: Preserving paradoxicallity
From we have seen, the way to avoid having a model for Yablo’s set is to block the possibility of having an element which is ‘bigger’ than any element with a biconditional associated and is it the only element in the interpretation of the predicate F.
In his paper, Ketland studies the properties that a 2-place relation
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must have as to be used in a formalization of Yablo’s biconditionals:
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My strategy will be to associate the set of Yablo’s biconditionals to the set of elements which are in a
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relation.
First, I must add a third condition to that relation, so it is non-empty:
(c) 
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Consider the following function:
· 
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This function goes from a set of objects to well formed formulas. Remains identifying the domain A of it:
· A = {
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Consider any model satisfying (a), (b) and (c) for a certain relationship
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. Having this, we could obtain, by applying f to a well defined set A, the set Y which are we looking. For simplicity, take the model to be a standard arithmetic model and the relationship to be “>”:
Y= {
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With this method, there is no way in which there is an element which is ‘bigger’ (
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” associated.
Section 4: Preserving non-circularity

Priest’s main point, as we have seen, is that “the paradox concerns a sequence of sentences, sn, or s(n)” and that “it is now the function s that is a fixed point”. 

We have also pointed out that his argument is specifically applied to a formalization of Yablo’s set involving the semantic notion of satisfaction.
Consider now the way in which we obtained the set of biconditionals. I will argue that there is no fixed-point there.
The (generalized) fixed point theorem establishes that for a theory K with certain conditions, if 
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 is any formula with the free variables displayed, there is formula
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The key is to identify a fixed-point around our function:
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Clearly, as the function has no appearances in both sides of the identity, it is not a fixed-point.

Nevertheless, as to obtain a fixed-point equivalence, it seems possible to identify:

· 
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But again this is not a fixed-point case. Note that the second identity can’t be the case, because if 
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This would be a fixed point case if, as in Priest’s formalization, one could identify (or make an equivalence):
(i)
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But this is a false identity (or equivalence). It is well known, mostly after Alfred Tarski’s researches, that one can not identify a formula,
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,with the formula asserting its truth, 
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Two other considerations remain.

First, consider applying the fixed-point theorem to the formula H(x). One would obtain:
K |-
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But the number
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 will have a biconditional associated, so:
K |-
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And trivially:

K |-
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This is a fixed point; but it is not a problem. The only thing we would need to do is to find
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 and exclude its associated biconditional. It is great news that we have a method to find
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. Then, what we need to do is, by arithmetization, to find the Gódel’s number of 
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and eliminate it’s associated biconditional. It is also easy to see that the paradox follows as usual without that biconditional.
At last, we must guarantee that there is no other fixed point in the set of biconditionals. In other words, we must show that for every biconditional
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Any arithmetization would need to assign a Gödel number for (H), ((),()) and each constant (n). The Gödel number of H(n),
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, as to preserve unicity, using prime number theory and so on. Clearly, it is rather difficult to construct an arithmetization in which 
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Section 5: Contradiction

At this point, we will follow the argument presented by Bueno O. y Colyvan M. in a forthcoming paper.
To preserve non-circularity, we have excluded certain numbers from having a biconditional associated. As ti start, we need to find a number bigger than the numbers with no associated biconditional, let’s say, for simplicity, 100 :
1. 
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modus ponens - 1 and 3
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modus ponens - 2 and 6
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contradiction - 5 and 7
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negation introduction - 3 to 8
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existential elimination in 11
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modus ponens - 12 and 13
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modus ponens - 14 and 17

19. 
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contradiction between 16 and 18
� If the reader is concearned about the lack of the truth predicate in the set of biconditionals, let me say that at this point I follow Ketland’s approach. Nevertheless, I will make explicit considerations about the relevance of this way of formalizing the set.


� It is worth noting that in his formulation of (A) The Uniform Homogeneous Yablo Principle – For all n, Yn is true if and only if, for all m>n, Ym is not true-, (B) The Uniform Homogeneous Yablo Scheme -� EMBED Equation.3  ���, and (C) The Uniform Fixed-Point Yablo Principle - � EMBED Equation.3  ���], Ketland makes no restriction to the range of the quantifiers, but at the time of pointing its numerical instances, he restricts to standard numbers.





� 21 is the Gödel number of the variable x.
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