JW?tafھohjۣ#K}{ *IN1>oדv[r^+JդDZ*)dL
6G:%%U7T]%5])؞X'K'kNr6[j[0+)~a}t;
ۋj_*Y1c"w??<,7ՁǶLt]LyWا76<0>b%l<[s[_&ݝ;}S>=~ɛX杛
oEqz
N)pޔlO4l_.àSgUUMC
q)j}[[>Zl:^O18T1Ga{vFq]3*zmC
AlowaڌEE! 5Uַ̖՞mْ[VllwbhRD jQ
T8=+\Z7cE!fq*CtbjO>Uf]Y78!¬EQnڷ(&UEVmޠ[$*72qCD./)j]KRQ
bxmFxyQ,KFtt,N']p<ϲdDGAxy
xLXtv<&Ėx:b;VFbrr< +#e99؎ǄزOGlcHlYN#1ae$,'2[xLXtv<&Ėx:b;VFbrr< +#e99؎ǄزOGlcHlYN#1ae$,'2[xLXĔIENDB`<@<NormalCJaJmHsHtH T@Tz Heading 1$<@&5CJ KH OJQJaJ DA@DDefault Paragraph FontRi@RTable Normal4
l4a(k@(No ListNONzNote Level 1$
&F@&OJPJQJNONzNote Level 2$
&F@&OJPJQJNONzNote Level 3$
&F@&OJPJQJNO"NzNote Level 4$
&F@&OJPJQJNO2NzNote Level 5$
&F@&OJPJQJNOBNzNote Level 6$
&F@&OJPJQJNORNzNote Level 7$
&F@&OJPJQJNObNzNote Level 8$
&F@&OJPJQJNOrNzNote Level 9$
&F@&OJPJQJ4@4zHeader
9r 4 @4OFooter
p#.)@.OPage Number < BCB <#v
<#<#H:P<#<#<#PL<#A=BCB^_vOQRPQj!"9Pg0hi}(Kxyy ~ 0000000000000000000000000000000000000000000000000000000000000000@000@000@000@000@00 00 0@0@00
0T8@0@000 {000 $''* $((%((( *!!"%ACBC]_hkORPQ]_vx!#029:GIPQ^aghloux#$+01hi~
!')+,57JLNOXZdqwy,x ACuvAB]_uvNROQij "89OPfg~/0gi{}'(JKwyx y } BG_OPRR"90}O ~ t^pPĵ^`OJQJo(8^8`OJQJo(^`OJQJo(o p^ `OJQJo(@^`OJQJo(x^x`OJQJo(H^H`OJQJo(o^`OJQJo(^`OJQJo(hh^h`o(.
^`hH.
pLp^p`LhH.
@@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PLP^P`LhH.pPg5
p#&91q>MP32Z/;]
_J`\}Y *O
^EnableWordNotesXO0@ , `@UnknownGz Times New Roman5Symbol3&z Arial7& VerdanaK1
MS Gothic3 0000?5 z Courier New;Wingdings 1hԖ1:%=%=T&h4d 2QP=5G2#The Liar Paradox in BASIC language philosophy, logic
Ferenc AndrasferencOh+'0$0D T`
$The Liar Paradox in BASIC language Ferenc Andrasphilosophy, logicemail:ferenc@andrasek.huNormal.dotferenc17Microsoft Office Word@=@&ksz@>J?M%GXQtv H&" WMFCُ Bbl
Qt EMFb`
P
%Rp@"Verdana7& Verdan@P$\Regis0L>0(dv%TTUUAAL
P TTUUAAL
P 0!
"Rp@Times New RomanGz Times ew RomanhD0ko0L>0(dv%T _6\nUUAA_c#L
The Liar Paradox in BASIC language
"#!
TT]6nUUAA]cL
P %TUUAAL
(Symbolic Logic and Automata)&
#%TT0UUAAL
P TT,AOUUAA,DL
P T,bVUUAA,]L
Every truth function corresponds to an isomorphic digital circuit. Consequently, the logical
%
!
T,`UUAA,^L
structure of every proposition can be presented within the range of propositional logic as an
%
TX,Z0UUAA,%L
PeqT[0UUAA[%aL
uivalent digital circuit. Providing that the logical values true and false correspond to the
T,Cg{UUAA,p`L
high and low voltage levels, the output of a circuit being equivalent with contradiction is
$
%
T,UUAA,?L
always low level for every input state, while the output of a c$$
$
TUUAAL
ircuit corresponding to a
T,aUUAA,_L
tautology is always high level, irrespective of the input states. On the other hand, remaining
%
$
%
T,$n\UUAA,QaL
propositions correspond to circuits the output of which is high level if and only if (hence iff)
$
T0,oLUUAA,&L
some of the atomic components of the p&
&
%
TMoDUUAAM6L
roposition are true, or rather, the inputs equivalent
Td,UUAA,YL
with the atomic propositions are high level. But what is the equivalent of a circulating %
&
!
#
T,a=UUAA,2]L
statement &" WMFC "bor argumentation? The propositions are true or false irrespective of time, whereas &
%
&
$
T,PUUAA,}L
tthe voltage level of
TPUUUAA}JL
the circuits can change in time. To be more precise, we can say that the
&
%
$
Td,UUAA,YL
input levels of the circuits are high or low depending on whether we evaluate the atomic
$
$
$
&
Tp,UUAA,[L
formulae of the formula expressing the logical structure of proposition true or false. The %
%
TX,1^iUUAA,^L
PvoTx_1iUUAA_^2L
ltage level of the output of the circuit and truth
TT1iUUAA^L
PTT1MiUUAA^,L
value of the formula result from it. I will
%
%
$
T,vUUAA,DL
call combinational automaton the digital circuits, which thus may
&
%
$
%TlwUUAAwL
Xmodel%T@UUAAL
p the formulae of
%
T,UUAA,GL
propositional calculus. Since one and the same atomic formulae can comp
%
'
%
%ToUUAAL
pose more complex %
%
T@,JUUAA,?SL
formulae, one automaton can have more outputs, where every output corresponds to a %
%
%
$
T,]UUAA,L
pcomplex formula. %
%
TT]UUAAL
P %T\,7UUAA,XL
Formulae connected with truth functions yield formulae again. Although there are always %
$
&
$
%Tx,
+UUAA, 2L
corresponding automata for them, the situation is
%
%
TD*+UUAA )L
not as simple in this case. We don t get
&
.
T,>yvUUAA,k_L
combined automata joined to each other in each case, and it is also possible that we don t get &
%
$
T,GUUAA,
L
han automaton
%
TTH`UUAAHL
P TaUUAAaL
operating machine or circuit &" WMFC b&
TTUUAAL
P TdUUAA3L
at all. To avoid this, it is sufficient to comply
%
T, UUAA, L
with the following rules%
%
TT
UUAA
L
P:TT. UUAA L
P Td, pW UUAA,L L
T(a)
Tq W UUAAqL ;L
It is permitted to join any two inputs of any two automata.
&
$
$
%
TT W UUAAL L
P Tl,j UUAA, L
X(b) A
#TDj A UUAA TL
rrange the automata on neighbouring levels and join the output of an automaton only
%
&
TH, ] UUAA, *L
with the input of another on higher level.%
TT^ t UUAA^ L
P T,
8
UUAA,
:L
At every point of time, the output state of a combinationa#
&
&T
8
UUAA
L
l automaton is unambiguously
%
&
T,K
z
UUAA,x
`L
determined by the state of inputs. In other words, the output of the machine is the function of &
#
%
T,
u
UUAA,
aL
its input. The two rules given above will guarantee this. If this were not case, it would not be
#
%
$
$
T,
UUAA,"L
possible to simulate the automaton
&
%T
UUAA9L
by logical formulae, since the truth value of a logical
&
TD,,dUUAA,YTL
formula is unambiguously determined by the truth value of its atomic formulae, and, %
&
&
&
%
Th,wUUAA,ZL
correspondingly, the truth value of a proposition is a function of the truth value of its
T,;UUAA,L
components. Therefore, th%
T<UUAA<=L
e rules given in (a) and (b) are interpreted in the world of
$
TT,
EUUAA,:,L
propositions in the following way: the truth
%
$
TT
EUUAA:L
PTx
EUUAA:2L
value of a proposition can never be influenced by
%6
x&WMFCb6
6 66
6
6 66
6
6 66
6
6 66
6
6 66
6
6 66
6
6 66
6
6 66
6
6 6."System@"Verdana
2
@@ B
2
@ ,'@Times New Roman@2
g#The Liar Paradox in BASIC language
2
g 72
(Symbolic Logic and Automata)
2

2
U 2
U]Every truth function corresponds to an isomorphic digital circuit. Consequently, the logical o 2
U^structure of every proposition can be presented within the range of propositional logic as an 2
Ueq2
cauivalent digital circuit. Providing that the logical values true and false correspond to the 2
U`high and low voltage levels, the output of a circuit being equivalent with contradiction is
j2
U?always low level for every input state, while the output of a c
22
ircuit corresponding to a 2
*U_tautology is always high level, irrespective of the input states. On the other hand, remaining
2
@Uapropositions correspond to circuits the output of which is high level if and only if (hence iff)
D2
UU&some of the atomic components of the p\2
U:6roposition are true, or rather, the inputs equivalent 2
kUYwith the atomic propositions are high level. But what is the equivalent of a circulating i
2
U]statement or argumentation? The propositions are true or false irrespective of time, whereas g
)2
Uthe voltage level ofz2
J the circuits can change in time. To be more precise, we can say that the
2
UYinput levels of the circuits are high or low depending on whether we evaluate the atomic e
2
U[formulae of the formula expressing the logical structure of proposition true or false. The s
2
UvoV2
d2ltage level of the output of the circuit and truth
2
nM2
s,value of the formula result from it. I will
q2
UDcall combinational automaton the digital circuits, which thus may
2
model
%2
the formulae of v2
UGpropositional calculus. Since one and the same atomic formulae can comp
%2
ose more complex
2
USformulae, one automaton can have more outputs, where every output corresponds to a
%2
.Ucomplex formula.
2
. 2
DUXFormulae connected with truth functions yield formulae again. Although there are always
V2
ZU2corresponding automata for them, the situation is I2
Zq)not as simple in this case. We dont get
2
oU_combined automata joined to each other in each case, and it is also possible that we dont get
2
U
an automaton
2
82
operating machine or circuit
2
UX2
\3 at all. To avoid this, it is sufficient to comply n
/2
Uwith the following rules
2
:
2
2
U(a) d2
i;It is permitted to join any two inputs of any two automata.
2
2
U(b) A
2
tTrrange the automata on neighbouring levels and join the output of an automaton only
J2
U*with the input of another on higher level.
2
? b2
U:At every point of time, the output state of a combinationa
72
l automaton is unambiguously 2
U`determined by the state of inputs. In other words, the output of the machine is the function of
2
Uaits input. The two rules given above will guarantee this. If this were not case, it would not be
>2
2U"possible to simulate the automaton
a2
29 by logical formulae, since the truth value of a logical a2
HUTformula is unambiguously determined by the truth value of its atomic formulae, and, 2
^UZcorrespondingly, the truth value of a proposition is a function of the truth value of its 12
tUcomponents. Therefore, thsg2
t=e rules given in (a) and (b) are interpreted in the world of M2
U,propositions in the following way: the truth
2
MV2
R2value of a proposition can never be influenced by ՜.+,D՜.+,H
px
old papershome= '$The Liar Paradox in BASIC language Title Headings :B_PID_LINKBASEA4http://ferenc.andrasek.hu
!"#$%&'()*+,/0123456789:;<=>?@ACDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~Root Entry Fx"?MData
1Table.&WordDocument;<SummaryInformation(BTDocumentSummaryInformation8CompObjq
FMicrosoft Office Word Document
MSWordDocWord.Document.89q